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Natural hosts frequently contain a cavity or cleft whose inner
concave surface matches the convex surface of a guest.? Recently,
synthetic hosts that mimic this feature (cavitands®) have been
designed.># If new and more elaborate host-guest systems are
to be developed, versatile and readily accessible building blocks
must be available. Here, we describe a novel building block, 2,
that meets these requirements. Compound 2 contains two fused
2-imidazolidone rings, which are flanked by two o-xylylene units.
Its overall shape is concave and its convex side is shielded by two
phenyl substituents. The use of 2 in the synthesis of three new
cavitands is demonstrated.*

Diphenylglycoluril (1a)® was treated with paraformaldehyde
and NaOH in Me,SO to yield the tetrakis(hydroxymethyl) de-
rivative 1b (85%).5® Refluxing 1b in benzene with 4 equiv of
p-toluenesulfonic acid gave 2a in 35% yield. Similarly, treatment
of 1b with an excess of hydroquinone or 1,4-dimethoxybenzene
in 1,2-dichloroethane gave 2b (75%) and 2¢ (50%), respectively.
Molecular models indicate that the o-xylylene units of 2 can have
upward (u) or downward () orientations, leading to three possible
conformers: uu, ud, or dd. Molecular mechanics calculations
reveal that conformer uu has the lowest energy.® For compound
2b an X-ray structure determination was performed.”® This
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'H NMR (Me,SO-d;) 5 8.67 (s, 4 H, OH), 7.10 (s, 10 H, Ar H), 6.47 (s, 4
H, Ar H), 5.37 and 3.57 (2 d, 8 H, CH,, / = 16 Hz); FAB MS (glycerol,
thioglycerol, acetic acid), m/e 563 (M + H)*. Fully acetylated 2b: 'H NMR
(CD,Cl,) 6 7.09 (s, 10 H, Ar H), 6.92 (s, 4 H, Ar H), 5.05 and 3.85 (2d,
8 H, CH,, J = 16 Hz), 2.34 (s, 12 H, CH,CO); FAB MS (triethyl citrate),
m/e 731 (M + H)*. Compound 4: IR (KBr) 2910, 2860, 1715, 1475, 1450,
1130, 1070 cm™!; 'H NMR (CDCly) 6 7.05 (s, 10 H, Ar H), 6.65 (s, 4 H, Ar
H), 5.65 (d, 4 H, NCHHAr, J = 16 Hz), 3.50-4.35 (m, 36 H, NCHHAr and
OCH,CH,); FAB MS (triethyl citrate), m/e 879 (M + H)*. Compound &:
FAB MS (glycerol, H,SO,), m/e 905 (M + H)*. Fully acetylated 5: IR
(KBr) 3605 and 3555 (bound H,0), 3940, 1760, 1730, 1645, 1465, 1430 cm™!;
'H NMR (CDCl,) 8 7.13 (s, 20 H, Ar H), 4.93 and 3.82 (24, 16 H, CH,,
J =16 Hz), 2.54 (s, 12 H, CH;CO); FAB MS (triethyl citrate), m/e 1073
(M + H)*. Compound 6: UV-vis (Me,SO) 413 nm (e 223); 'H NMR
(Me,SO-dg) 6 8.45 (s, 4 H, NCHN), 7.65 and 7.10 (2 m, 26 H, ArH), 6.60
(s, 4 H, Ar H), 5.40 (d, 4 H, NCHHAr, J = 16 Hz), 440 (m, 8 H,
OCH,CH,N), 3.5-4.0 (m, 28 H, NCHHAr and OCH,CH,0CH,); FAB MS
(glycerol, thioglycerol), m/e 1522 M*, 1487 (M - CI)*, 1452 (M - 2CI)*,
1418 (M - 3Cl + H)*, 1316 (M - RhCl; + H)*; conductivity measurements
(Me,SO, 107 M): 1:1 electrolyte, A 34 Q! cm? mol!. All compounds gave
C, H, and N analyses within 0.3% of theory.
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structure determination (3) confirms the uu conformation of 2
in the solid state.

The 'H NMR spectrum of fully acetylated 2b in CD,Cl, and
in Me,SO-d; displays one pair of well-defined doublets for the
CH, protons at 6 5.05 and 3.85 (J = 16 Hz). The position and
splitting pattern of the doublets did not change over a temperature
range as large as =95 to 150 °C. This led us to believe that either
one conformer (uu or dd) is present or that all three conformers
interconvert rapidly. To solve this question we synthesized com-
pound 2d. The (CH,), bridges of this compound do not allow
for any other conformation than uu. As the 'H NMR spectra
of 2d and its nonbridged analogue 2¢ show identical pairs of
doublets for the CH,N protons (£0.05 ppm), we conclude that
compounds 2 also adopt the uu conformation in solution.

Basket-shaped cavitand 4 was prepared (75%) by treating 2b
with 2 equiv of 1,11-dichloro-3,6,9-trioxaundecane and K,CO;
in Me,SO.2 The oxygen atoms of the urea units and the oxy-
ethylene bridges form two receptor sites at the far ends of the
molecule. These receptor sites bind alkali metal ions with affinities
peaking for K*.° Cavitand 4 forms strong 1:1 complexes with
protonated diamines e.g., {H;N(CH,)¢NH;}**.° In these com-
plexes the guest is wedged in between the o-xylylene rings as is
concluded from the observed upfield shifts (up to 1.5 ppm) of the
guest CH, protons in the TH NMR spectrum.

Refluxing 1b and hydroquinone (molar ratio 1:1) in 1,2-di-
chloroethane in the presence of 4 equiv of p-toluenesulfonic acid
produced cavitand 5 (3%, yield not optimized).} Compound 5
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10.50; Cs*, 9.25; NH,*, 9.50; {H,N(CH,)sNH,}**, 15.0; {H;N(CH,){NH,**,
16.0.
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contains two diphenylglycoluril and two hydroquinone rings linked
through eight methylene bridges. The void in 5 (2.5 X 2.0 A)
is not large enough to hold an organic guest. However, higher
homologues of §, e.g., those containing additional diphenyl-
glycoluril and hydroquinone rings, do have large enough voids.!

Starting from 2, hosts that have a metal center next to a cavity
are readily accessible. As an example, we prepared 6 by reacting
2b successively with: excess of Tos(OCH,CH,),Cl and base in
Me,SO, excess of benzimidazole (Bz) and NaH in DMF, and 1
equiv of RhCly in Me,SO (overall yield 70%). Compound 6 has
two trans-coordinated Cl ligands, one being inside the cavity, the
other outside. The binding and catalytic properties of hosts 4-6
are currently being investigated and will be published in forth-
coming papers.
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We present here for the first time NMR spectroscopic evidence
of a nonconcerted double proton transfer. The double proton
motion studied occurs along slightly asymmetric double-minimum
potentials in solid TTAA? according to Scheme I.  For H-chelates
of the malonaldehyde type like TTAA, it has been very difficult
to establish the double-minimum character of the proton potential
using different spectroscopic techniques® including NMR.4
Goedken et al.’ have performed an X-ray crystallographic analysis
of solid TTAA, have postulated the “diagonal” tautomerism 1 =
3 shown in Scheme I, and have further suggested that the de-
generacy of this process is lifted due to a rhombic distortion of
the unit cell. However, the X-ray method cannot reveal details
such as the nonconcerted character of the double proton motion
in TTAA or if the tautomerism is static or dynamic.

Since solid-state proton transfers between nitrogen atoms are
most directly probed by ’N CPMAS NMR %’ we have performed
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Figure 1. "N CPMAS NMR spectra of 95% '*N-enriched TTAA at
6.082 MHz as a function of temperature: 10-Hz line broadening, | K-4K
zero filling, 25-ms cross-polarization time, 4000-Hz sweep width, 1.5-s
repetition time, 9-us 'H-7/2 pulses, quadrature detection, 1000 scans on
the average; reference, external S'NH,NO;.

Scheme I
R = CH,

such experiments on 95% *N-enriched TTAA.® Figure | shows
some of the ’N CPMAS spectra obtained with an apparatus
described previously.” We observe four lines, a-d, of equal
intensity. Between 100 and 80 K, the lowest temperature where
experiments were performed, no spectral changes occur, indicating
that the chemical shifts are temperature independent within ex-
perimental error. Taking into account PN solution NMR data,®
we assign the overlapping lines a and d to NH atoms and the two
resolved lines b and ¢ to two inequivalent =N— atoms in solid
TTAA. As the temperature is increased, lines d and ¢ move
toward each other without coalescing, as do lines a and b. The
low-field shift of line a from 96 to 288 K matches the high-field
shift of line b over the same temperature range. The same is true
for lines d and ¢. Since the intrinsic chemical shifts are tem-
perature independent, these changes can only be explained by fast
proton transfer from atom a to b and from atom d to ¢. In other
words, the position of line n depends on the average proton density
D, on atom n. The observed chemical shift difference 6., = 6,
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